DS 210 Discussion 2

1 Git Overview

Technically: “Git is a distributed version control software system that is capable of managing
versions of source code or data. It is often used to control source code by programmers who are

developing software collaboratively. - Wikipedia”

In short, Git is a fast and arranged way to control the changes of your codes, so you do not need to

do “v1,v2,..” or “(1) (2) (3)". Basically, you create branches (local and remote) for your codes, add

changes made to your local branches, commit them, pull from and push to remote. Sometimes you

will also need to merge between branches.

( Remote ) ( Clone W BranchesT Working Files
pull >
______ [ |
--track | checkout
______ T
fetch > reset >
U N A
Y. remote ! reset --hard >
I R B [
merge >
B
Stage 1
< push < commit < add
| |
< commit -a
. ) . A )

N

Figure 1: A chart of git operations. (from Wikipedia)

2 Fork the sample repository

1. Open our code repository https://github.com/rust4ds/ds210-sp26-al-code in your browser:


https://github.com/rust4ds/ds210-sp26-a1-code

= O rust4ds / ds210-sp26-al-code Q 8 -~ + - O 1 B B8

Code Issues  Pullrequests  Actions  Projects  Wiki  Security Insights  Settings

Ll ds210-sp26-a1-code Pubic ®wWatch 0 v ¥ Fork 1~  ¥¥ Star 0

# main ~ F © Gotofile  + About

Code Examples used in DS 2

@ KinanBab rename file 1d5c0cd - 2 daysago  $9) A1 - Spring 2026

00 lecture_2_why_rust rename file 2 days ago 0 Readme
&8 MIT license

[ .gitignore add lecture 2, need README 3 days ago
Ar Activity

Y LICENSE Initial commit 3 days ago & Custom properties
Y¢ Ostars

[ README.md Instructions 2 days ago

)

N wiatrhinA

2. Click the fork button on top right to fork your own copy of this repo to your account.

Create a new fork

A fork is a copy of a repository. Forking a repository allows you to freely experiment with changes without
affecting the original project. View existing forks.

Required fields are marked with an asterisk (¥).

Owner * Repository name *

Choose an owner ~ / ds210-sp26-a1-code

By default, forks are named the same as their upstream repository. You can customize the name to
distinguish it further.

Description

Code Examples used in DS 210 A1 - Spring 2026

45 / 350 characters

Copy the main branch only
Contribute back to rust4ds/ds210-sp26-al-code by adding your own branch. Learn more.

3 Clone the forked repo

Open your terminal, inside of your course folder (or anywhere you like), clone the repo you just
cloned to your local computer.

1. By https:

git clone https://github.com/[your username]/ds210-sp26-al-code.git
2. Or by ssh:

git clone git@github.com:[your username]/ds210-sp26-al-code



You can also find links to copy in the repo page of your own forked repo. (Don’t clone the original

repo from rust4ds!)
Go to file + <> Code ~

Local Codespaces

) Clone/ ©)

HTTPS SSH  GitHub CLI

git@github.com: |'5|

Use a password-protected SSH key.

() Download ZIP

1. You may need to configure your creditional on your computer. For now, you could use https and
type your username and password there.

2. Though, we recommend you to create an ssh key, config your name and email in Git, and use the
second approach which is more secure and set-and-forget.
« But remember, never share or leak your ssh key in public!! That gives anyone who has it
the access to your GitHub account and precious projects.)
« A good tutorial of how to do that: https://docs.github.com/en/authentication/connecting-to-
github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

4 Add remote repo (Work in groups)

1. Now open the cloned repo folder in your VSCode. In the left bar you should see a git tab, and
click on it will show you the a visualization of branches, commits, merges, and so on of this repo:


https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

v CHANGES

“ GRAPH £9 Auto

rename file

Initial commit

2. Work with your classmates in group of two, add the other’s forked repo to the remote:
git remote add other git@github.com:[other username]/ds210-sp26-al-code

or

git remote add other https://github.com/[other username]/ds210-sp26-al-code.git

5 Complete the short code

1. Locate the file discussion_2 git/src/main.rs. In your terminal, try to use cargo to run the
codes to test your rust runs well.

cd discussion 2 git
cargo run

v DS210-SP26-A1-CODE
v [@w discussion_2_qit

@ S

(R} main.rs

’ @

2. For the two functions, each one select one function and complete it in your VSCode.
+ One of you does



X: 164) — 164

X % 2

« The other does

164) — 164

3. Commit the changes you make with a reasonable message (like “Implement parity function.”).
+ You can do that in your terminal (recommended):

# Stage all changes you make

git add .

# Commit the staged changes

git commit -m "[message you want to write]"

« Or in VSCode GUI:

v CHANGES

Implement parity function,

v Commit

6 Push to the remote

In this part, we will use command line to have a better understanding of what’s happening here.
These can be also done in GUIs but we want you to understand the process.

1. First, let’s try to push into your own remote repo origin/main:
git push # This will push your local 'main' branch to the remote 'origin'

« Since you cloned from your own repo, your local main branch is tracked with your remote
origin/main. Thus, the git push will automatically push your commits to the tracking
origin/main.

2. After both of you make the push, try pull the other’s changes into your local branch:

git fetch --all # Fetch all changes from remotes
git merge other/main # Merge the changes from the other's repo

3. There is a conflict happening since your codes have different implementation of functions. No
worries! Now we will solve and merge them.



<<<<<<< HEAD
a: 164, b: 164) = 164

b: 164) — 164
b
>>>>>>> origin/add

7 Resolve Conflicts and Merge
1. Click the toast shown in the bottom right:

Resolve in Merge Editor

2. Now you should see something like

3. Select “Accept Incoming” from changes of other/main, which is what we want to get.

+ Or, you can modify the codes in the bottom window manually. This allows more flexible edits

and merges.
4. Click the toast:

Complete Merge

5. Remember to make the commit!



v CHANGES

Merge remote-tracking branch

other/main’

v Continue

6. Now you finshed merging the codes from the other’s repo! Let’s try running:
cargo run

It should give output:
cargo run

discussion_2_git v0.1.0

"dev’ profile [unoptimi

“target/debug/discussior
Parity of 5 + 6 is 1

7. Lastly, push your merged local branch to your remote:

git push

8 One more thing...
Now you know how to make changes to your repo locally, commit them, push them to remote
(which is GitHub here), and merge other’s changes into your own codebase.

But how to actively contribute your codes to original/other forked repo? You will need to make a pull
request (PR). This is not a git feature but GitHub, and you may want to use this approach for
collaboration works in course projects (fork a repo of your own, did your part in your group, make
PR to main repo, discuss and merge the PR).

Due to time constriants we cannot do a demo here, but we strongly recommend you to see Github’s

tutorial of “Pull Requests” https://docs.github.com/en/pull-requests/collaborating-with-pull-

requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests. You should

already be equipped with enough knowledge to understand how it works.

+ Please do not make random PR to rust4ds (or any other community projects on GitHub)! You can
try to create your own repo and play with it as you want.


https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

	1 Git Overview
	2 Fork the sample repository
	3 Clone the forked repo
	4 Add remote repo (Work in groups)
	5 Complete the short code
	6 Push to the remote
	7 Resolve Conflicts and Merge
	8 One more thing…

